Journal of Organometallic Chemistry, 295 (1985) 175-187 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

MEHRFACHBINDUNGEN ZWISCHEN HAUPTGRUPPENELEMENTEN UND ÜBERGANGSMETALLEN

XVIII *. HETEROMETALLISCHE SELENIDO-KOMPLEXE

WOLFGANG A. HERRMANN*, JÜRGEN ROHRMANN,

Lehrstuhl für Anorganische Chemie I, Anorganisch-chemisches Institut der Technischen Universität München, Lichtenbergstrasse 4, D-8046 Garching ü. München (Deutschland)

MANFRED L. ZIEGLER und THOMAS ZAHN

Anorganisch-chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, D-6900 Heidelberg 1 (Deutschland)

(Eingegangen den 4. Juni 1985)

Summary

The selenium bridge present in the iron complex $(\mu$ -Se)[$(\eta^5$ -C₅H₅)Fe(CO)₂]₂ (1) exhibits nucleophilic character and is thus prone to addition reactions with electrophilic reagents. Treatment of 1 with the coordinatively unsaturated fragment $(\eta^5$ -C₅H₅)Mn(CO)₂ results in formation of the heteronuclear complex $(\eta^5$ -C₅H₅)₃Fe₂MnSe(CO)₆ (2) which contains a flattened pyramidal Fe₂MnSe core, with the selenium atom occupying the top of position of this framework. No FeMn and FeFe bonds are present in this molecule (single crystal X-ray diffraction study). Compound 2 is very light-sensitive in solution, thus giving the derivative $(\eta^5$ -C₅H₅)₃Fe₂MnSe(CO)₅ (3). According to a crystal structure determination, this latter compound once again exhibits a pyramidal Fe₂MnSe core but with the iron atoms directly connected with each other via a single bond (266.7(1) pm).

Zusammenfassung

Die Selen-Brücke des Eisen-Komplexes $(\mu$ -Se) $[(\eta^5-C_5H_5)Fe(CO)_2]_2$ (1) besitzt nucleophilen Charakter und ist deshalb zu Additionsreaktionen mit elektrophilen Reagenzien befähigt. Behandlung von 1 mit dem koordinativ ungesättigten Fragment $(\eta^5-C_5H_5)Mn(CO)_2$ ergibt den heteronuclearen Komplex der Zusammenset-

0022-328X/85/\$03.30 © 1985 Elsevier Sequoia S.A.

^{*} XVII. Mitteilung vgl. Ref. 1.

zung $(\eta^5-C_5H_5)_3Fe_2MnSe(CO)_6$ (2) sowie das carbonylärmere Derivat $(\eta^5-C_5H_5)_3Fe_2MnSe(CO)_5$ (3). Die Verbindung 2 ist in Lösung überaus lichtempfindlich und geht bei kurzzeitiger Bestrahlung in 3 über. Nach Ausweis von Einkristall-Röntgenstrukturanalysen beider Produkte weisen 2 und 3 ungewöhnlich stark abgeflachte Fe₂MnSe-Gerüste mit dem Selenatom an der Pyramidenspitze auf. Während in 2 keine Metall-Metall-Bindungen vorliegen, tritt in 3 eine FeFe-Bindung sowie ein verbrückter Carbonyl-Ligand auf.

Einleitung

Weist ein substituentenfreies Chalkogen-Brückenatom wie in der Verbindung $(\mu$ -Se)[(η^5 -C₅H₅)Fe(CO)₂]₂ (1) noch eine hohe Elektronendichte auf, so äussert sich dies in einem nucleophilen Reaktionsverhalten. Demzufolge findet hier mit geeigneten Reagenzien (z.B. CF₃SO₃CH₃) Methylierung der Selen-Brücke unter quantitativer Bildung des Komplexkations [(μ -SeCH₃){(η^5 -C₅H₅)Fe(CO)₂}₂]⁺ statt [1]. Aufgrund der Isolobal-Analogie (η^5 -C₅H₅)Mn(CO)₂ (d^6 -ML₅) $\leftarrow CH_3 + [2,3]$ war auch für das Molekülfragment (η^5 -C₅H₅)Mn(CO)₂ eine Adduktbildung mit dem Selenido-Komplex 1 zu erwarten.

A. Präparative Ergebnisse

Der Selenido-Komplex 1 wurde mit einem Überschuss des substitutionslabilen Solvens-Komplexes (η^5 -C₅H₅)Mn(CO)₂THF (THF = Tetrahydrofuran) bei Raumtemperatur umgesetzt. Durch säulenchromatographische Aufarbeitung des Reaktionsansatzes und Umkristallisation der Rohprodukte konnten das erwartete Additionsprodukt der Bruttozusammensetzung (C₅H₅)₃Fe₂MnSe(CO)₆ (2) sowie das carbonylärmere Derivat (C₅H₅)₃Fe₂MnSe(CO)₅ (3) in 21 bzw. 19% Ausbeute kristallin isoliert werden (Schema 1).

176

Während die Verbindung 3 in Lösung einige Zeit haltbar ist, fällt der Komplex 2 durch seine ausgeprägte Lichtempfindlichkeit auf. Bereits bei Bestrahlungszeiten von weniger als 60 s (!) konnten in Tetrahydrofuran-Lösungen von 2 das selenfreie Produkt $[(\eta^5-C_5H_5)Fe(CO)_2]_2$ (14%) sowie das Decarbonylierungs-Derivat 3 (11%) identifiziert werden (vgl. Exp. Teil). Die Bildung von 3 aus 2 in einer Photoreaktion während der Umsetzung von $(\eta^5-C_5H_5)Mn(CO)_2THF$ mit $(\mu$ -Se) $[(\eta^5-C_5H_5)-Fe(CO)_2]_2$ (1) ist allerdings auszuschliessen, da alle Arbeitsoperationen unter strengem Lichtausschluss durchgeführt wurden.

War bereits aufgrund der Infrarot- und ¹H-NMR-Spektren der Verbindung 2 eine Konstitution mit ausschliesslich terminalen Carbonyl-Liganden und dem Komplex 3 eine unsymmetrische, verbrückende CO-Liganden aufweisende Gerüststruktur zuzuweisen, griffen wir zur endgültigen Konstitutionsaufklärung auf Einkristall-Röntgenstrukturanalysen beider Produkte zurück (vgl. Abschn. B und C).

Entsprechend führt die Umsetzung des zur μ -Selenido-Verbindung 1 isovalenzelektronischen Komplexes (μ -Te)[(η^5 -C₅H₅)Cr(CO)₃]₂ [4] mit (η^5 -C₅H₅)Mn-(CO)₂THF zu einem grünen Additionsprodukt der Zusammensetzung (C₅H₅)₃-Cr₂MnTe(CO)₈, allerdings in geringen Ausbeuten. Diese Verbindung ist zwar durch Tieftemperatur-Säulenchromatographie isolierbar, aufgrund ihrer geringen thermischen Beständigkeit aber nicht in analysenreiner, kristalliner Form erhältlich. Die Charakterisierung erfolgte ¹H-NMR- sowie massenspektrometrisch (FD-MS).

Zur Überprüfung der Koordinationsfähigkeit basischer Ligandbrücken an das 16-Elektronen-Fragment Fe(CO)₄ wurde der μ -Tellurido-Komplex (μ -Te)](η^5 -C₅H₅)Cr(CO)₃]₂ mit überschüssigem Fe₂(CO)₉ umgesetzt. Durch säulenchromatographische Aufarbeitung des Reaktionsansatzes konnten als einzige isolierbaren Produkte die Verbindung Fe₂(μ_3 -Te)₂(CO)₉ [5] sowie der Zweikern-Komplex [(η^5 -C₅H₅)Cr(CO)₃]₂ [6] aufgefunden werden, deren Bildung auf die leichte Spaltbarkeit der CrTe-Bindungen im Edukt zurückgeführt werden muss [4].

B. Molekülstruktur des μ_3 -Selenido-Komplexes 2

Diese Verbindung kristallisiert aus n-Hexan/Methylenchlorid (4 + 1 Vol.-Teile) bei -30° C monoklin in der Raumgruppe $C2/c-C_{2_{h}}^{6}$. Kristallographische Daten sind im Exp. Teil, die Atomkoordinaten sowie thermische Schwingungsparameter in Tab. 1 und ausgewählte Bindungsdaten in Tab. 2 aufgelistet *.

Wie ein Blick auf Fig. 1 und 2 zeigt, ist die zentrale Struktureinheit dieses Moleküls als abgeflachte Fe₂MnSe-Pyramide zu beschreiben. Das die Pyramidenspitze besetzende Selen-Atom ist hierbei an drei strukturell äquivalente (η^5 -C₅H₅)M(CO)₂-Fragmente (M = Fe, Mn) koordiniert, die untereinander keine bindenden Metall-Metall-Wechselwirkungen aufweisen ($d(MM') \sim 405$ pm). Die zu 242.1-244.5 pm ermittelten Metall-Selen-Bindungen und die von ihnen aufgespannten Winkel (113 ± 1°) verleihen dem trigonal-pyramidalen Fe₂MnSe-Ensemble Pseudo-C₃-Symmetrie, lässt man die unterschiedlichen Übergangsmetalle ausser Betracht.

^{*} Weitere Einzelheiten zu den Kristallstrukturbestimmungen der Komplexe 2 und 3 sind beim Fachinformationszentrum Energie/Physik/Mathematik, D-7514 Eggenstein-Leopoldshafen, hinterlegt und können unter Angabe der Hinterlegungsnummern CSD 51460, der Autoren und des Zeitschriftenzitats angefordert werden.

Fig. 1. Molekülstruktur der Komplexverbindung 2 im Kristall (ohne Wasserstoffatome).

Sowohl die FeSe- als auch die MnSe-Bindungen sind näherungsweise als Einfachbindungen zu interpretieren [7,8]. Authentische Doppelbindungen zwischen Mangan und Tellur wurden zu 245.9–251.2 pm ermittelt [9,10]. Nimmt man eine Differenz der 2°-Kovalenzradien von Selen und Tellur von 20 pm an [11], sollten Mangan-Selen-Doppelbindungen kaum länger als 231 pm sein. Als Referenzver-

Fig. 2. Ausschnitt aus der Struktur von 2. Der besseren Übersichtlichkeit halber sind die π -gebundenen C₅H₅-Liganden weggelassen.

TABELLE 1

ATOMKOORDINATEN (in Bruchteilen der Zellkanten,	×10 ⁴) UND	THERMISCHE P	ARAMETER
U_{equiv} DES μ_3 -SELENIDO-KOMPLEXES 2 ^a			

Atom	x/a	у/b	z/c	$U_{ m equiv}$	
Se	1378(0)	5797(0)	7457(0)	307(5)	
Fe(1)	302(0)	4695(1)	6750(0)	384(9)	
Fe(2)	2380(0)	5751(1)	9027(0)	354(8)	
Mn	1212(0)	8356(1)	6921(0)	405(11)	
C(1)	95(3)	6516(8)	6833(4)	463(73)	
C(2)	697(3)	3892(7)	7685(4)	500(83)	
C(3)	1833(3)	6407(8)	8961(4)	554(84)	
C(4)	2667(3)	7656(7)	9182(4)	580(76)	
C(5)	1244(3)	9399(7)	7524(4)	515(83)	
Ció	294(3)	8345(6)	6020(3)	474(80)	
C(7)	- 575(3)	4782(8)	5411(4)	694(81)	
C(8)	-719(3)	3748(9)	5663(4)	724(89)	
C(9)	- 227(4)	2563(8)	6122(4)	708(96)	
C(10)	226(3)	2834(7)	6176(4)	706(85)	
càń	10(4)	4211(8)	5721(4)	652(86)	
C(12)	3268(3)	4726(8)	9606(4)	854(121)	
C(13)	2746(4)	3764(8)	9009(4)	805(94)	
C(14)	2480(3)	3339(7)	9193(5)	839(108)	
C(15)	2883(5)	4071(10)	9953(5)	948(169)	
C(16)	3369(3)	4941(8)	10194(4)	906(83)	
càn	2157(4)	7920(9)	7444(5)	671(108)	
C(18)	2115(4)	9500(9)	7511(5)	786(122)	
C(19)	1484(4)	10049(8)	6644(6)	796(155)	
C(20)	1183(4)	8798(8)	6113(5)	834(111)	
C(21)	1590(3)	7511(9)	6595(4)	730(121)	
$\dot{\mathbf{O}(1)}$	- 54(2)	7666(6)	6866(3)	747(80)	
0(2)	9 11(2)	3328(6)	8245(3)	783(73)	
O(3)	1480(2)	6818(6)	8927(3)	948(72)	
0(4)	2896(2)	8892(5)	9361(3)	970(70)	
0(5)	1259(3)	10117(5)	7897(3)	849(86)	
O(6)	- 325(2)	8432(5)	5397(2)	786(57)	
			.,	$\overline{U_{11}}$	
H(7)	- 834(3)	5721(8)	5080(4)	1008(58)	
H(8)	- 1087(3)	3855(8)	5540(4)	1008(58)	
H(9)	- 198(4)	1685(8)	6373(4)	1008(58)	
H(10)	617(3)	2183(7)	6469(4)	1008(58)	
HÌIÍ	218(3)	4674(9)	5637(4)	1008(58)	
H(12)	3540(3)	5213(8)	9618(4)	1008(58)	
H(13)	2575(4)	3411(8)	8522(4)	1008(58)	
H(14)	2087(3)	2658(7)	8867(5)	1008(58)	
H(15)	2838(5)	3991(10)	10262(5)	1008(58)	
H(16)	3725(3)	5599(8)	10693(4)	1008(58)	
H(17)	2526(4)	7226(9)	7918(5)	1008(58)	
H(18)	2444(4)	10104(10)	8031(5)	1008(58)	
H(19)	1306(4)	11102(9)	6471(6)	1008(58)	
H(20)	752(4)	8814(8)	5496(5)	1008(58)	
H(21)	1494(3)	6477(9)	6376(4)	1008(58)	

^a U_{equiv} ist definiert als ein Drittel der Spur der orthogonalisierten U-Matrix.

180	
-----	--

TABELLE 2

AUSGEWÄHLTE STRUKTURPARAMETER DES µ₃-SELENIDO-KOMPLEXES 2

A. Bindungslängen (pm)			
Fe(1)–Se	244.5(1)	$Fe(1)-C(7 \cdots 11)$	208.1-210.3
Fe(2)-Se	244.3(1)	$Fe(2) - C(12 \cdots 16)$	205.5-210.0
Mn-Se	242.1(1)	$Mn-C(17\cdots 21)$	212.6-214.5
Fe(1) - C(1)	178.1(9)	C(1)-O(1)	113.3(11)
Fe(1) - C(2)	177.5(10)	C(2)-O(2)	112.4(13)
Fe(2)-C(3)	174.4(13)	C(3)-O(3)	113.9(16)
Fe(2)-C(4)	175.0(7)	C(4)–O(4)	114.8(8)
Mn-C(5)	177.6(12)	C(5)-O(5)	114.1(15)
Mn-C(6)	173.8(6)	C(6)-O(6)	177.3(6)
B. Bindungswinkel (grad)			
Fe(1)-Se-Fe(2)	112.9(1)	C(5)-Mn-Se	95.2(3)
Fe(1)-Se-Mn	113.8(0)	C(5)-Mn-C(6)	91.1(4)
Fe(2)-Se-Mn	112.0(0)	C(6)-Mn-Se	96.7(2)
C(1)-Fe(1)-Se	91.2(3)	Fe(1) - C(1) - O(1)	178.2(4)
C(1) - Fe(1) - C(2)	94.1(4)	Fe(1)-C(2)-O(2)	175.8(6)
C(2)-Fe(1)-Se	97.2(3)	Fe(2)-C(3)-O(3)	178.9(7)
C(3)-Fe(2)-Se	89.8(2)	Fe(2)-C(4)-O(4)	173.6(8)
C(3)-Fe(2)-C(4)	92.0(5)	Mn-C(5)-O(5)	177.6(8)
C(4)-Fe(2)-Se	95.7(2)	Mn-C(6)-O(6)	175.5(7)
C. Torsionswinkel (grad)			
Mn-Se-Fe(2)-C(4)	5.8		
Fe(1)-Se-Mn-C(6)	11.9		
Fe(2)-Se-Fe(1)-C(2)	10.4		•
Mn-Se-Fe(2)-C(3)	86.2		
Fe(1)-Se-Mn-C(5)	79.9		
Fe(2)-Se-Fe(1)-C(1)	83.9		

bindung kann auch der Komplex $(\mu, \eta^2 - \text{SeCH}_2)[(\eta^5 - C_5H_5)Mn(CO)_2]_2$ [7] dienen, der eine zu 248.8 pm ermittelte Einfachbindung und eine formale Doppelbindung von 237.1 pm aufweist; letztere ist aber eher als oberer Grenzwert aufzufassen.

Die drei $(\eta^5-C_5H_5)M(CO)_2$ -Fragmente (M = Mn, Fe) sind unter Berücksichtigung des die vierte Koordinationsstelle besetzenden Selen-Atoms als Pseudotetraeder aufzufassen. Dabei weichen die zu $93 \pm 4^\circ$ gefundenen Interligandwinkel des basalen Ligandsatzes (CO, CO, Se) nur wenig voneinander ab. Die konformative Einstellung der drei Teilstrukturen zueinander lässt ebenfalls angenäherte C_3 -Symmetrie erkennen, bringt man unterschiedliche Übergangsmetallzentren zur Deckung.

Ungewöhnlich an der Molekülstruktur von 2 ist die extrem starke Abflachung der pyramidalen Fe₂MnSe-Einheit. Die Winkelsumme an der Pyramidenspitze beträgt 338.7° und liegt somit sehr weit ausserhalb des Bereichs von 190–261°, der bei analogen μ_3 -S-, μ_3 -Se- und μ_3 -Te-Komplexen beobachtet wird [8,12]; allerdings weisen Verbindungen dieses Strukturtyps stets ein oder mehrere Metall-Metall-Bindungen auf. Auch im pyramidalen Kation [Te(CH₃)₃]⁺ findet man eine Winkelsumme von nur 285° [13]. Die Bindungsverhältnisse am Brückenatom sind daher eher mit denen in Verbindungen des Typs R₂S=O (R = F, Cl, Br, CH₃, C₆H₅) vergleichbar (Winkelsummen von 306...326°) [19]. Strukturell nähert sich **2** somit durchaus dem Extremfall des planaren Mn₃Te-Ensembles, wie es in der Verbindung $(\mu_3\text{-Te})[(\eta^5\text{-}C_5\text{H}_5)\text{Mn}(\text{CO})_2]_3$ vorliegt [9]; während die Planarität dieses Systems aus dem Vorliegen dreier MnTe-Doppelbindungen resultiert, ist die Winkelaufweitung in 2 wohl vorwiegend auf Ligandabstossungseffekte zurückzuführen, denn das Auftreten einer FeFe-Bindung im strukturell ähnlichen Komplex 3 führt bereits zu einer Erniedrigung der Winkelsumme um 24° (vgl. Abschnitt C).

C. Molekülstruktur des µ₃-Selenido-Komplexes 3

Diese Verbindung kristallisiert aus n-Hexan/Methylenchlorid (3 + 1 Vol.-Teile)bei -30° C monoklin in der Raumgruppe $P2_1/n$. Atomkoordinaten und thermische Schwingungsparameter sind in Tab. 3, Bindungsdaten auszugsweise in Tab. 4 und röntgenographische Daten im Experimentellen Teil zusammengefasst.

Wie Fig. 3 und 4 zeigen, unterscheidet sich die Struktur des carbonylärmeren Derivats 3 von seiner isolierbaren Vorstufe durch das Auftreten einer FeFe-Bindung und eines die beiden Eisen-Zentren überbrückenden Carbonyl-Liganden. Die Gesamtstruktur lässt keine Symmetrie mehr erkennen. Die zentrale Mn_2 FeSe-Einheit besitzt eine verzerrt trigonal-pyramidale Struktur, die mit einer Winkelsumme von 314.9° an dem die Pyramidenspitze besetzenden Selen-Atom ebenfalls ungewöhnlich stark abgeflacht ist (vgl. Abschnitt B). Während die MnSe-Bindung mit 243.4 pm gegenüber 2 nahezu unverändert geblieben ist, treten verkürzte FeSe-Bindungen auf (d(FeSe) 234.4 pm). Eine bindende Wechselwirkung zwischen den Eisen- und Manganatomen ist bei einem Abstand von 420 pm ausser Reichweite.

Betrachtet man die in der rechten Molekülhälfte (Fig. 3) vorliegende (μ -CO)[(η^5 -

Fig. 3. Molekülstruktur der Komplexverbindung 3 im Kristall (ohne Wasserstoffatome).

 C_5H_5)Fe(CO)]₂-Partialstruktur, so sind die darin auftretenden Bindungsabstände und -winkel mit jenen im Komplex cis-[(η^5 -C₅H₅)Fe(CO)₂]₂ nahezu identisch [14].

Berücksichtigt man die Selen-Brücke, sind die von den beiden Eisen-Zentren und

TABELLE 3

ATOMKOORDINATEN (×10⁴ Bruchteile der Zellkanten) UND THERMISCHE PARAMETER U_{equiv} (×10⁴) DES μ_3 -SELENIDO-KOMPLEXES 3^{*a*}

Atom	x/a	y/b	z/c	
Se	199(0)	1232(0)	3863(0)	267(2)
Fe(1)	- 167(0)	493(0)	2273(0)	315(3)
Fe(2)	2257(0)	867(0)	3306(0)	325(3)
Mn	- 385(0)	2721(0)	4104(0)	297(3)
C(1)	1676(6)	408(3)	1932(4)	393(22)
O(1)	2186(4)	158(2)	1216(3)	539(17)
C(2)	- 312(6)	1330(3)	1360(4)	386(21)
O(2)	- 395(5)	1811(3)	687(3)	679(21)
C(3)	2492(6)	1868(4)	2736(4)	383(23)
O(3)	2685(5)	2523(3)	2386(4)	659(20)
C(4)	- 563(7)	3009(4)	2797(5)	552(27)
O(4)	- 706(6)	3249(3)	1958(4)	961(27)
C(5)	- 2037(7)	2390(4)	3998(6)	730(33)
O(5)	- 3174(5)	2196(4)	3911(6)	1429(38)
C(6)	- 259(7)	- 866(4)	2176(5)	596(28)
C(7)	- 976(8)	- 502(4)	1294(5)	697(31)
C(8)	- 2039(7)	- 20(4)	1610(5)	637(28)
C(9)	- 1972(6)	- 87(4)	2669(5)	525(26)
C(10)	- 872(6)	- 598(4)	3041(5)	474(24)
C(11)	3189(6)	602(4)	4861(5)	510(25)
C(12)	4147(7)	946(5)	4282(6)	625(30)
C(13)	4222(7)	390(5)	3457(6)	777(34)
C(14)	3342(8)	- 297(5)	3534(6)	758(34)
C(15)	2700(8)	-156(5)	4410(6)	642(30)
C(16)	- 536(8)	3625(4)	5264(5)	699(32)
C(17)	75(8)	2875(4)	5720(5)	690(34)
C(18)	1267(7)	2765(4)	5310(5)	351(26)
C(19)	1395(7)	3408(4)	4595(5)	542(26)
C(20)	276(7)	3942(4)	4573(5)	614(30)
H(6)	511(7)	-1235(4)	2194(5)	
H(7)	- 782(8)	- 563(4)	593(5)	
H(8)	- 2699(6)	299(4)	1158(5)	
H(9)	- 2583(6)	175(4)	3085(5)	
H(10)	- 581(6)	-742(4)	3756(5)	
H(11)	2918(6)	856(4)	5475(5)	
H(12)	4653(7)	1464(5)	4424(6)	
H(13)	4786(7)	462(5)	2920(6)	
H(14)	3202(8)	- 776(5)	3069(6)	
H(15)	2040(8)	- 520(5)	4659(6)	
H(16)	-1373(8)	3870(4)	5406(5)	
H(17)	- 271(8)	2514(4)	6221(5)	
H(18)	1906(7)	2313(4)	5490(5)	
H(19)	2124(7)	3473(4)	4188(5)	
H(20)	103(7)	4444(4)	4151(5)	

^a U_{equiv} ist definiert als ein Drittel der Spur der orthogonalisierten U-Matrix.

den Brückenatomen aufgespannten Dreiecksflächen entlang der FeFe-Bindung gegeneinander zu 9.2° gefaltet. Die bezüglich der Cyclopentadienyl-Liganden *cis*ständigen $(\eta^5-C_5H_5)Fe(CO)$ -Fragmente weisen einen Torsionswinkel der Fe-CO-

TABELLE 4

AUSGEWÄHLTE STRUKTURPARAMETER DES μ_3 -SELENIDO-KOMPLEXES 3

A. Bindungslängen (pr	1)			
Fe(1)–Se	234.8(1)	$Fe(1)-C(6\cdots 10)$	210.0-214.4	
Fe(2)-Se	234.1(1)	$Fe(2)-C(11 \cdots 15)$	208.2-215.4	
Mn-Se	243.4(1)	$Mn-C(16\cdots 20)$	208.4-211.2	
Fe(1)-Fe(2)	266.7(1)	C(1)-O(1)	118.4(8)	
Fe(1)-C(1)	195.5(6)	C(2)-O(2)	114.6(7)	
Fe(1)-C(2)	176.0(6)	C(3)–O(3)	114.8(8)	
Fe(2)-C(1)	193.4(6)	C(4)-O(4)	114.1(8)	
Fe(2) - C(3)	176.3(7)	C(5)–O(5)	116.6(9)	
Mn-C(4)	173.9(7)			
Mn-C(5)	171.6(7)			
B. Bindungswinkel (gr	ad)			
Fe(1)-Se-Fe(2)	69.3(0)	C(3)-Fe(2)-C(1)	89.2(3)	
Fe(1)-Se-Mn	125.0(0)	Se-Mn-C(4)	96.8(2)	
Fe(2)-Se-Mn	120.6(0)	Se-Mn-C(5)	86.9(2)	
Fe(2)-Fe(1)-Se	55.2(2)	C(4)-Mn-C(5)	91.8(4)	
Fe(2)-Fe(1)-C(1)	46.4(2)	Fe(1)-C(1)-Fe(2)	86.6(3)	
Fe(2)-Fe(1)-C(2)	99.2(2)	Fe(1)-C(1)-O(1)	135.9(4)	
Se-Fe(1)-C(2)	102.2(2)	Fe(2)-C(1)-O(1)	137.4(5)	
C(2)-Fe(1)-C(1)	83.8(3)	Fe(1)-C(2)-O(2)	172.8(5)	
Fe(1)-Fe(2)-Se	55.5(0)	Fe(2)-C(3)-O(3)	177.8(5)	
Fe(1)-Fe(2)-C(1)	47.0(2)	Mn-C(4)-O(4)	175.6(6)	
Fe(1)-Fe(2)-C(3)	98.6(2)	Mn-C(5)-O(5)	177.4(6)	
Se-Fe(2)-C(3)	94.8(2)			
C. Geraden und Ebene	'n			
Gerade a: Mn–Se				
Ebene A: Se-Fe(1)-F	Fe(2)			
Ebene B: Fe(1)-C(1)-	-Fe(2)			
Ebene C: Mn-C(4)-S	Se			
D. Schnittwinkel (grad	l)		· · · · · · · · · · · · · · · · · · ·	
	Α	В	Ċ	
a ^a	41.4	32.2	90.0	
Α		9.2	76.8	
В			80.1	
E. Torsionswinkel (gra	nd)			
C(2)-Fe(1)-Fe(2)-C	(3)	8.5		
Cp(cent)-Fe(1)-Fe(2)-C(3)	171.5		
Cp'(cent)-Fe(2)-Fe(1))-C(2)	159.0		
Cp(cent)-Fe(1)-Fe(2)-Cp'(cent)		4.0		

^a Winkel zwischen den Ebenennormalen und der Geraden a.

Fig. 4. Ausschnitt aus der Struktur von 3. Der besseren Übersichtlichkeit halber sind die π -gebundenen C₅H₅-Liganden weggelassen.

Bindungen von 8.5° auf. In erster Näherung beschreiben die an die beiden Eisenatome fixierten Ligandsätze (C_5H_5 , Se, Fe', 2 CO) stark verzerrte, quadratischpyramidale Strukturpolyeder, wenn man den Fünfring-Liganden jeweils die Gerüstposition der Pyramidenspitze zuweist. Die benachbarten basalen Liganden schliessen miteinander Winkel im Bereich von 46–102° ein. Das (η^5 - C_5H_5)Mn(CO)₂-Fragment ist wie in **2** unter Berücksichtigung des die vierte Koordinationsstelle besetzenden Selen-Atoms als Pseudotetraeder aufzufassen, wobei die Interligandwinkel des basalen Ligandsatzes 87–97° betragen.

In Verbindung 2 und 3 fungiert die ligandfreie Selen-Brücke bezüglich der Eisen-Zentren als Einelektronendonator und gegenüber dem 16-Elektronen-Fragment $(\eta^5-C_5H_5)Mn(CO)_2$ zusätzlich als Zweielektronendonator.

Experimenteller Teil

Alle Arbeiten wurden unter Ausschluss von Luftsauerstoff und Feuchtigkeit durchgeführt (absolutierte und stickstoffgesättigte Lösungsmittel; Schlenkrohr-Technik). (η^5 -C₅H₅)Mn(CO)₃ wurde aus Manganocen und CO/H₂ in einer Autoklaven-Reaktion nach Lit. 15 dargestellt. Die Synthese von (μ -Se)[(η^5 -C₅H₅)Fe(CO)₂]₂ (1) ist in Lit. 1 beschrieben. Zur Säulenchromatographie kamen stickstoffgesättigtes Kieselgel 60 (Merck, Art.-Nr. 7734) und stickstoffgesättigtes, neutrales Aluminiumoxid Super I (Woelm Pharma, Art.-Nr. 04583) zur Anwendung. Für Photoreaktionen diente ein Quecksilber-Hochdruckbrenner TQ 150/Z1 der Quarzlampengesellschaft mbH Hanau. Schmelz- und Zersetzungspunkte wurden in offenen Kapillaren bestimmt (Büchi SMP-20) und sind nicht korrigiert.

 $(\mu_3$ -Selenido)bis[dicarbonyl(η^5 -cyclopentadienyl)ferrio]dicarbonyl(η^5 -cyclopentadienyl)mangan (2) und $(\mu_3$ -Selenido)(μ -carbonyl)bis[carbonyl(η^5 -cyclopentadienyl)ferrio]dicarbonyl(η^5 -cyclopentadienyl)mangan(Fe–Fe) (3)

Eine Lösung von 1.00 g (4.90 mmol) (η^5 -C₅H₅)Mn(CO)₃ in 200 ml Tetrahydro-

184

furan wird unter Wasserkühlung in einer Tauchlampenapparatur 90 min photolysiert. Die Lösung des so bereiteten dunkelroten Solvenskomplexes (η^{5} -C₅H₅)Mn(CO)₂THF wird in ein Schlenkgefäss überführt und mit 400 mg (0.92 mmol) (μ -Se)[(η^{5} -C₅H₅)Fe(CO)₂]₂ (1) versetzt.

Alle nachfolgenden Arbeitsoperationen sind unter Lichtausschluss durchzuführen! Man lässt bei Raumtemperatur 1 h rühren, wobei sich die rotbraune Lösung allmählich braunviolett färbt. Der nach Abziehen des Lösungsmittels verbleibende Rückstand wird an einer mit Kieselgel (Akt. I)/n-Hexan beschickten, wassergekühlten Säule $(1.5 \times 65 \text{ cm})$ chromatographiert. Mit einem Laufmittelgemisch aus n-Hexan/Toluen (1 + 1 Vol.-Teile) eluiert man zunächst ca. 200 mg unverbrauchtes Cymantren in einer blassgelben Zone. Mit n-Hexan/Toluen (1 + 2 Vol.-Teile) folgt eine schwachgrüne Zone eines nicht identifizierten Nebenproduktes (ca. 5 mg). Mit reinem Toluen eluiert man in einer rotbraunen bis rotvioletten Mischzone die Verbindung $[(\eta^5-C_5H_5)Fe(CO)_2]_2$ [16] zusammen mit dem μ_3 -Selenido-Komplex 2. Mit Toluen/Diethylether (5 + 1 Vol.-Teile) folgt das Produkt 3 in Form einer dunkelbraunen Zone, die nach dem Abziehen des Lösungsmittels aus Methylenchlorid/n-Hexan (1 + 4 Vol.-Teile) umkristallisiert wird. Man erhält 100 mg (19%) des Selenido-Komplexes 3 in Form schwarzbrauner Nadeln. Fp. 152–154°C (Zers.). 3 ist mit dunkelbrauner Farbe gut löslich in Tetrahydrofuran, Methylenchlorid und Chloroform, mässig löslich in Diethylether und unlöslich in n-Hexan; die Lösungen sind luftempfindlich.

Elementaranalyse. Gef.: C, 41.07; H, 2.60; Fe, 19.20; Mn, 9.28. $C_{20}H_{15}$ -O₅Fe₂MnSe (580.9) ber.: C, 41.35; H, 2.60; Fe, 19.22; Mn, 9.45%. Molmasse 582 (FD-MS, aus Toluen; bzgl. ⁵⁶Fe, ⁸⁰Se). *Infrarot-Daten* (ν (CO) in cm⁻¹): 2012sst, 1977sst, 1945st, 1928sst, 1888m, 1874sst, 1730sst [KBr]; 2018sst, 1975sst, 1945st, 1900st, 1774st [THF]. ¹H-NMR-Spektrum (270 MHz, 25°C, CDCl₃): δ (C₅H₅) 4.98 [s, 5H], 4.67 [s, 5H], 4.62 [s, 5H].

Die bei der Säulenchromatographie gewonnene Mischfraktion, bestehend aus $[(\eta^5-C_5H_5)Fe(CO)_2]_2$ und dem μ_3 -Selenido-Komplex 2, wird nach dem Abziehen des Lösungsmittels an einer mit Aluminiumoxid (Akt. I)/n-Hexan beschickten, wassergekühlten Säule (1.2 × 35 cm) chromatographiert. Zunächst werden mit einem Laufmittelgemisch aus n-Hexan/Diethylether (1 + 1 Vol.-Teile) sowie mit reinem Diethylether ca. 70 mg des Nebenprodukts $[(\eta^5-C_5H_5)Fe(CO)_2]_2$ als braune Zone eluiert. Mit dem gleichen Laufmittel oder mit Diethylether/Tetrahydrofuran (4 + 1 Vol.-Teile) folgt der μ_3 -Selenido-Komplex 2 in einer rotvioletten Zone. Der nach Abziehen des Lösungsmittels verbleibende Rückstand wird aus Tetrahydrofuran/n-Hexan (1 + 5 Vol.-Teile) umkristallisiert. Man erhält 120 mg (21%) 2 als schwarz-violette Kristalle, die sich bei 113°C zersetzen. Die Verbindung ist gut löslich in n-Hexan; die Lösungen sind sehr lichtempfindlich. Beim längeren Stehenlassen bei Raumtemperatur oder bei Einwirkung von Wärme tritt allmähliche Zersetzung unter Bildung von $[(\eta^5-C_5H_5)Fe(CO)_2]_2$ ein.

Elementaranalyse. Gef.: C, 41.31; H, 2.49; Fe, 18.15; Mn, 8.86; $C_{21}H_{15}$ -O₆Fe₂MnSe (608.9) ber.: C, 41.42; H, 2.48; Fe, 18.34; Mn, 9.02%. Molmasse 610 (FD-MS; aus Toluen; bzgl. ⁵⁶Fe, ⁸⁰Se). *Infrarot-Daten* (ν (CO) in cm⁻¹): 2035st, 2025st, 1998st, 1977st, 1960sst, 1897st, 1891st, 1832sst [KBr]; 2015st, 2000st, 1972st, 1902st, 1851st [THF]. ¹H-NMR-Spekrum (270 MHz, 25°C, CDCl₃): δ (C₅H₅) 4.99 [s, 10H], 4.52 [s, 5H].

Photolyse des μ_3 -Selenido-Komplexes 2

Eine Lösung von 100 mg (0.16 mmol) **2** in 20 ml Tetrahydrofuran wird in einem Schlenkrohr ca. 40 s (!) dem Licht einer Quecksilber-Hochdrucklampe ausgesetzt. Die zu Beginn braunviolette Lösung verfärbt sich dabei dunkelbraun. Der nach dem Abziehen des Lösungsmittels verbleibende Rückstand wird an einer mit Kieselgel (Akt. I)/n-Hexan beschickten, wassergekühlten Säule chromatographiert. Mit Toluen als Laufmittel eluiert man ca. 8 mg (14%) des Zweikernkomplexes $[(\eta^5-C_5H_5)Fe(CO)_2]_2$ [16] in einer rotbraunen Zone. Mit Toluen/Diethylether (10 + 1 Vol.-Teile) folgt der Selenido-Komplex **3** in Form einer braunen Zone (ca. 10 mg; 11%). Die Charakterisierung der Photolyseprodukte erfolgte durch Vergleich der Infrarotspektren mit jenen von authentischen Proben.

Röntgenographische Daten des μ_3 -Selenido-Komplexes 2

Kristallgrösse: $0.4 \times 0.4 \times 0.4$ mm; Kristallhabitus: würfelförmig; d(röntg.) 1.86 Mg m⁻³; F(000) 2340; monoklines Kristallsystem: Raumgruppe $C2/c-C_{2_h}^6$; Gitterkonstanten: a 3276(3), b 853.5(6), c 2687(2) pm; β 144.70(4)°; V 4341 × 10⁶ pm³, Z = 8; linearer Absorptionskoeffizient: μ 35.64 cm⁻¹; optimale Kristalldicke: t 0.06 cm; system. Auslöschungen: h0l (für l = 2n + 1), hkl (für h + k = 2n + 1); 3223 vermessene Reflexe, davon 2875 voneinander unabhängige Reflexe mit $I > 2.5\sigma(I)$ (Syntex P3-Vierkreisdiffraktometer; Mo- K_{α} -Strahlung, λ 71.069 pm; Messbereich: $3^{\circ} \leq 2\theta \leq 60^{\circ}$); R(isotrop) = 0.065; R(anisotrop) = 0.041; $R_w = \Sigma ||F_c| - |F_0|| - \sqrt{\text{wght}} / \Sigma F_0 \sqrt{\text{wght}} = 0.033$ (wght = $1/\sigma^2(F)$). Strukturlösung und -verfeinerung vgl. Lit. 17, 18.

Röntgenographische Daten des µ₃-Selenido-Komplexes 3

Kristallgrösse: $0.3 \times 0.3 \times 0.3$ mm; Kristallhabitus: quaderförmig; d(röntg.) 1.92 Mg m⁻³; F(000) 1200; monoklines Kristallsystem: Raumgruppe $P2_1/n$; Gitterkonstanten: a 998.4(2), b 1566.3(4), c 1295.8(4), β 97.84(2)°; V 2007 × 10⁶ pm³, Z = 8; linearer Absorptionskoeffizient: μ 38.55 cm⁻¹; optimale Kristalldicke: t =0.05 cm; system. Auslöschungen: 0k0 (für k = 2n + 1), h0l (für h + l = 2n + 1); 3184 vermessene Reflexe, davon 2844 voneinander unabhängige Reflexe mit $I \ge$ 2.5 $\sigma(I)$ (Syntex P3-Vierkreisdiffraktometer; Mo- K_{α} -Strahlung, λ 71.069 pm; Messbereich: $3^{\circ} \le 2\theta \le 60^{\circ}$); R(isotrop) = 0.071; R(anisosotrop) = 0.043; $R_w =$ $\Sigma || F_c | - |F_0 || \sqrt{\text{wght}} / \Sigma F_0 \sqrt{\text{wght}} = 0.035$, mit wght = $1/\sigma^2(F)$. Strukturlösung und -verfeinerung vgl. Lit. 17, 18.

Dank

Diese Arbeit erfuhr grosszügige Unterstützung durch die Deutsche Forschungsgemeinschaft, den Fonds der Chemischen Industrie, die Hoechst Aktiengesellschaft, die Degussa AG, die Herbert Quandt-Stiftung der Varta AG und das Bundesministerium für Forschung und Technologie. Hierfür danken wir an dieser Stelle herzlich.

Literatur

- 1 W.A. Herrmann, J. Rohrmann und Ch. Hecht, J. Organomet. Chem., 290 (1985) 53.
- 2 Zusammenfassung: R. Hoffmann, Angew. Chem., 94 (1982) 725; Angew. Chem. Int. Ed. Engl., 21 (1982) 711 (Nobel-Vortrag).

- 3 Zusammenfassung: F.G.A. Stone, Angew. Chem., 96 (1984) 85; Angew. Chem. Int. Ed. Engl., 23 (1984) 85.
- 4 W.A. Herrmann, J. Rohrmann, M.L. Ziegler und Th. Zahn, J. Organomet. Chem., 273 (1984) 221.
- 5 W. Hieber und J. Gruber, Z. Anorg. Allg. Chem., 296 (1958) 91.
- 6 R. Birdwhistell, P. Hackett und A.R. Manning, J. Organomet. Chem., 157 (1979) 239.
- 7 W.A. Herrmann, J. Weichmann, R. Serrano, K. Blechschmitt, H. Pfisterer und M.L. Ziegler, Angew. Chem., 95 (1983) 331; Angew. Chem., Int. Ed. Engl., 22 (1983) 314; Angew. Chem. Suppl., (1983) 363.
- 8 (a) C.E. Strouse und L.F. Dahl, J. Amer. Chem. Soc., 93 (1971) 6032; (b) V.W. Day, D.A. Lesch und T.B. Rauchfuss, J. Amer. Chem. Soc., 104 (1982) 1290; (c) L.F. Dahl und P.W. Sutton, Inorg. Chem., 2 (1963) 1067.
- 9 M. Herberhold, D. Reiner und D. Neugebauer, Angew. Chem., 95 (1983) 46; Angew. Chem. Int. Ed. Engl., 22 (1983) 59; Angew. Chem. Suppl., (1983) 10.
- 10 W.A. Herrmann, Ch. Hecht, M.L. Ziegler und B. Balbach, J. Chem. Soc., Chem. Commun., (1984) 686.
- 11 L. Pauling, Die Natur der Chemischen Bindung, 3. Aufl., Verlag Chemie, Weinheim, 1976, S. 217.
- 12 (a) A. Winter, L. Zsolnai und G. Huttner, J. Organomet. Chem., 269 (1984) C29; (b) R.D. Adams, I.T. Horvath und H.S. Kim, Organometallics, 3 (1984) 548; (c) A.A. Pasynskii, I.L. Eremenko, B. Orazsakhatov, G.Sh. Gasanov, V.M. Novotorsev, O.G. Ellert und Z.M. Seifulina, J. Organomet. Chem., 270 (1984) 53; (d) R.D. Adams und I.T. Horvath, Inorg. Chem., 23 (1984) 4718; (e) W.A. Herrmann, Ch. Hecht, M.L. Ziegler und Th. Zahn, J. Organomet. Chem., 273 (1984) 323; (f) D.A. Lesch und T.B. Rauchfuss, Organometallics, 1 (1982) 499.
- 13 F. Einstein, J. Trotter und B.J. Williston, J. Chem. Soc. (A), (1969) 2018.
- 14 R.F. Bryan, P.T. Greene, M.J. Newlands und D.S. Field, J. Chem. Soc. (A), (1970) 3068.
- 15 W.P. Fehlhammer, W.A. Herrmann, K. Öfele in G. Brauer (Hrsgb.), Metallorganische Komplexverbindungen, in: Handbuch der Präparativen Anorganischen Chemie 3. Aufl., 3. Band, Enke Verlag, Stuttgart 1982, S. 1799 ff.
- 16 R.B. King und M.B. Bisnette, J. Organomet. Chem., 8 (1967) 287.
- 17 G.M. Sheldrick, SHELXTL Programm, Version 1980, Anorganisch-chemisches Institut der Universität Göttingen.
- 18 International Tables for X-Ray Crystallography, Vol. IV, S. 99, Kynoch Press, Birmingham 1974.
- 19 A.F. Wells, Structural Inorganic Chemistry, 3. Aufl., S. 416 (Tab. 76), Clarendon Press, Oxford, 1975.